INTRALESIONAL BLEOMYCIN: AN EFFECTIVE ALTERNATIVE FOR HYPERTRIPHIC SCARS AND KEOIDS IN SKIN OF COLOR

Although intralesional corticosteroids are the mainstay therapy for hypertrophic scars and keloids in skin of color, intralesional bleomycin may also present a safe and effective treatment for these patients, new research finds. In the study, patients were either treated monthly with intralesional triamcinolone acetonide (10mg/mL) or with intralesional bleomycin (1mg/mL) for three consecutive months. In terms of patient satisfaction score, one half of both groups reported a very good improvement. Photographic as well as ultrasonographic evaluation showed no difference between the two groups. Bleomycin was found to enter the blood circulation in a very small amount. The major side effect was hyperpigmentation and there was no skin atrophy detected in this study.

The authors concluded that the treatment is comparable to intralesional triamcinolone, however they reported that hyperpigmentation was the major side effect in darker skin types.


COMBINATION HYDROQUINONE, GLYCOLIC ACID, AND HYALURONIC ACID FOUND EFFECTIVE IN THE TREATMENT OF MELASMA

A cream formula containing 4% hydroquinone + 10% glycolic acid + 0.01% hyaluronic acid was recently found very effective in treatment of melasma with tolerable side effects. In a study published last month, researchers randomized patients with mild, moderate-to-severe melasma to receive either a cream formula containing 4% hydroquinone (Group I), a cream formula containing 4% hydroquinone + 10% glycolic acid (Group II), a cream formula containing 4% hydroquinone + 0.01% hyaluronic acid (Group III), a cream formula containing 4% hydroquinone + 10% glycolic acid + 0.01% hyaluronic acid (Group IV), or placebo cream (Group V). They found that groups I, III, and IV showed highly significant changes in modified MASI score after using the treatment, while group II showed significant change in MASI score after using the treatment. Moreover, there was highly significant difference between the dermoscopic color findings before and after treatment.

— J Cosmet Dermatol. 2015 Apr 6

“BLUE VITILIGO” CASE REPORTED

A case of “blue vitiligo” was recently reported in a 23-year-old Chinese patient receiving narrowband psoralen ultraviolet B (PUVB) therapy. One week after treatment, the investigators noticed that blue macules had appeared in and around the injection sites. Dermoscopy revealed blue spots and reticular telangiectasia within the white patches, according to investigators. Histological examination revealed an absence of epidermal melanocytes and pigment in the basal layer, as well as deposition of mela-nophages between collagen bundles or surrounding blood vessels and appendages in the middle and lower parts of the dermis. The researchers made a diagnosis of blue vitiligo, however they noted that the blue color faded gradually over time. They noted that case provides direct evidence to support the previous surmise that PUVB can contribute to blue vitiligo.


BY THE NUMBERS

The percentage of African Americans who reported having more than four sunburns in the preceding year, according to survey data from the Centers for Disease Control and Prevention. All individuals, regardless of skin type, increase their likelihood of skin cancer after exposure to UV light. For more survey data and prevention guidelines, visit the Skin Cancer Foundation website, www.skincancer.org.

After years of avoiding most laser therapies, patients with skin of color can explore new options for device-based treatment, writes Candace Spann, MD, in the November/December 2013 edition of Modern Aesthetics:

Historically, light-based devices have been inappropriate for use in skin of color. There is a high risk of post-procedure scarring and pigmentary irregularities with ablative lasers like CO$_2$ or Erbium. Additionally, melanin in the skin competes with a laser’s target chromophore (such as hair, blood vessels, etc.), rendering treatment ineffective and allowing damaging heat to pool in the skin, causing burns. In recent years, a few laser systems have come to market that are safe for use in darker skin tones, such as some diode lasers for hair removal and Nd:YAG systems. These have been met with enthusiasm by clinicians and patients alike. However, device-based resurfacing had remained inaccessible to most patients with darker skin tones.

The emergence of radiofrequency devices offers a new option for facial and body treatments for patients of color. Newer RF technologies exert their effects through the targeted delivery of heat through the dermis and into the subcutis. The heat is delivered below the epidermis, usually with no ablation, thus obviating any concerns about scarring or hyperpigmented healing. And since RF energy acts differently than light, there is no interference by melanin.

Aesthetic patients tend to be well-informed about available treatments and are generally savvy about their options. Patients of color, specifically, have learned to be wary of laser-based procedures. The growth of the device market has provided new options for these patients, and there is a noticeable level of grassroots interest. With some targeted marketing and patient education, the aesthetic practice can cultivate a strong base among patients of color. Once patients understand the differences between radiofrequency and light-based procedures, they are receptive to treatment.

Word of mouth has been a powerful factor for my practice, as well. Patients have typically been pleased with their results and spread the word to friends and acquaintances.

Dr. Bernstein addresses how clinicians can meet the challenge of treating skin of color with an ND: YAG laser on DermTube.com. He also discusses challenges and opportunities for laser hair removal in patients with skin of color. To see the full interview, visit www.dermtube.com. Search Key: Skin of Color.

“Treating skin of color is one of the most challenging aspects of being a skin laser surgeon… Melanin pigment can be a desired target for treating freckles and to remove them. But usually it’s an undesirable target for treating blood vessels, since melanin pigment sits above those vessels and can absorb the light and the skin can be damaged.”

—Eric Bernstein, MD